Blog

Articles about computational science and data science, neuroscience, and open source solutions. Personal stories are filed under Weekend Stories. Browse all topics here. All posts are CC BY-NC-SA licensed unless otherwise stated. Feel free to share, remix, and adapt the content as long as you give appropriate credit and distribute your contributions under the same license.

tags ·  RSS ·  Mastodon ·  simple view · page 14/15

 

Running a personal website with Jekyll

posted: updated:
I have redesigned my website and moved it to a new host as well: I’m running it as personal Jekyll website hosted on GitHub now.

The Lotka-Volterra equations: Modeling predator-prey dynamics

posted: updated:
The Lotka-Volterra system, also known as the predator-prey equations, is a mathematical model that describes the interaction between two species: predators and their prey. The system captures the dynamic relationship between the population sizes of predators and prey over time, highlighting the intricate balance between them. In this post we explore this system and calculate its numerical solution using numerical integration Python.

The SIR model: A mathematical approach to epidemic dynamics

posted: updated:
In the wake of the COVID-19 pandemic, epidemiological models have garnered significant attention for their ability to provide insights into the spread and control of infectious diseases. One such model is the SIR model, forming the foundation for studying the dynamics of epidemics. In this blog post, we delve into the details of the SIR model, providing a mathematical description, and showcasing its application through a Python simulation.

Interactive COVID-19 data exploration with Jupyter notebooks

posted: updated:
Amidst the ongoing challenges of the COVID-19 pandemic, I have written a Jupyter notebook that facilitates interactive exploration of COVID-19 data. You can select specific countries and visualize key aspects such as confirmed cases, deaths, and vaccinations. The notebook is openly available on GitHub. Feel free to use and share it.

Solving the Lorenz system using Runge-Kutta methods

posted: updated:
In my previous post, I introduced the Runge-Kutta methods for numerically solving ordinary differential equations (ODEs), that are challenging to solve analytically. In this post, we apply the Runge-Kutta methods to solve the Lorenz system. The Lorenz system is a set of differential equations known for its chaotic behavior and non-linear dynamics. By utilizing the Runge-Kutta methods, we can effectively simulate and analyze the intricate dynamics of this system.

The two-body problem

posted: updated:
The two-body system is a classical problem in physics. It describes the motion of two massive objects that are influenced by their mutual gravitational attraction. The two-body problem is a special case of the n-body problem, which describes the motion of two objects that are influenced by their mutual gravitational attraction. In this post, we make use of Runge-Kutta methods to solve the according equations of motion and simulate the trajectories of artificial satellites around the Earth.

Runge-Kutta methods for solving ODEs

posted: updated:
In physics and computational mathematics, numerical methods for solving ordinary differential equations (ODEs) are of central importance. Among these, the family of Runge-Kutta methods stands out due to its versatility and robustness. In this post we compare the first four orders of the Runge-Kutta methods, namely RK1 (Euler’s method), RK2, RK3, and RK4.

Earth’s dipolar magnetic field

posted: updated:
In physics and computational mathematics, numerical methods for solving ordinary differential equations (ODEs) are of central importance. Among these, the family of Runge-Kutta methods stands out due to its versatility and robustness. In this post we compare the first four orders of the Runge-Kutta methods, namely RK1 (Euler’s method), RK2, RK3, and RK4.

Restarting my website

posted: updated:
In the wake of the COVID-19 pandemic, I have made the decision to relaunch my website. While I have previously utilized my website for smaller personal projects and showcasing my photographs, I now intend to broaden its scope. I will be posting on a range of topics including physics, neuroscience, data science, machine learning, artificial intelligence, open-source projects, and more. As a result, I will be revamping the website in the upcoming months. Stay tuned for the updates.

German Angst

posted: updated:
Co-effects of the Corona lockdown: people buy like crazy toilet paper, until nothing is left anymore. This is a copycat work, the original work from David Hugendick can be found on twitter .

updated: