Interactive COVID-19 data exploration with Jupyter notebooks
In these challenging times, we have all experienced the impact of the COVID-19 pandemic, either directly or through the measures taken to contain its spread. With an abundance of COVID-19 data available from public sources, I have developed a straightforward Jupyter notebook that enables the interactive exploration of this data. You can select the data from a specific country and visualize different aspects of the pandemic, such as the number of confirmed cases, the number of deaths, and number of vaccinations. The source of the data is a csv table provided by covid.ourworldindata.orgꜛ. Please find the notebook in this GitHub repositoryꜛ and feel free to utilize and share it.
You can also run the notebook in Google Colab or Binder by clicking on one of the buttons below:
Here is the code:
import matplotlib.pyplot as plt
import ipywidgets as widgets
from IPython.display import display
import pandas as pd
import mplcursors
# Load data
url = "https://covid.ourworldindata.org/data/owid-covid-data.csv"
df = pd.read_csv(url)
# Create interactive widgets
country_dropdown = widgets.Dropdown(
options=df['location'].unique(),
value='World',
description='Country:'
)
columns_checkbox = widgets.SelectMultiple(
options=list(df.columns[4:]),
value=['total_cases', 'new_cases'],
description='Columns:'
)
# Plotting function
def plot_data(country, columns):
plt.figure(figsize=(7, 5))
selected_data = df[df['location'] == country]
for column in columns:
plt.plot(selected_data['date'], selected_data[column], label=column.replace('_', ' ').title())
plt.xlabel('Date')
plt.ylabel('Count')
plt.title(f'COVID-19 Data for {country}')
plt.legend()
plt.xticks(rotation=45)
mplcursors.cursor(hover=True)
plt.show()
# Create interactive output
out = widgets.interactive_output(plot_data, {'country': country_dropdown, 'columns': columns_checkbox})
# Display widgets and output
display(country_dropdown, columns_checkbox, out)
For reproducibility:
conda create -n sir_model_covid19 -y python=3.9
conda activate sir_model_covid19
conda install -y mamba
mamba install -y pandas matplotlib numpy scipy scikit-learn ipykernel notebook ipympl mplcursors
If you have any questions or suggestions, feel free to leave a comment below.
Comments
Commenting on this post is currently disabled.
Comments on this website are based on a Mastodon-powered comment system. Learn more about it here.