Bernstein Conference

Published in: Technische Universität Berlin, Berlin, Germany, 2022
Type: Poster Presentation

Citation

Pragya Mishra, Fabrizio Musacchio, Pranjal Dhole, Shekoufeh Gorgi Zadeh3 Sophie Crux, Felix Nebeling, Stefanie Poll, Manuel Mittag, Falko Fuhrmann, Eleonora Ambrad, Andrea Baral, Julia Steffen, Miguel Fernandes, Thomas Schultz, Martin Fuhrmann, "Bernstein Conference" (2022). Technische Universität Berlin, Berlin, Germany, http://doi.org/10.12751/nncn.bc2022.123

Abstract

The automatic detection of dendritic spines is still a challenging and yet not fully resolved problem with regard to multi-photon microscopy. The emergence of convolutional neural networks (CNN) like U-Nets enabled the development of deep learning based segmentation pipelines for biomedical images in general and for dendritic spines in particular. While these pipelines are most suitable for in-vitro confocal image data, they provide lower prediction accuracy when applied to volumetric in-vivo two-photon images that have a lower signal-to-noise ratio and larger movement artifacts. Thus, researchers of this field still tend to analyze dendritic spines manually, which is time-consuming and contains the risk of human bias. We therefore developed a pipeline for multi-class semantic image segmentation based on a fully convolutional neural network, that specifically targets 3D in-vivo multi-photon image data. By choosing U-Net as the underlying network architecture, only a few labeled training images are required. Also, the U-Net is applied in a 2D manner to further reduce the computation time. A post-hoc 3D connectivity analysis merges the classified spine pixels and reconstructs the 3D morphology. Our pipeline is capable to segment spines from its associated dendrite with satisfying accuracy and enables the further analysis of, e.g., spine morphology and spine density.


Comments

Commenting on this post is currently disabled.

Comments on this website are based on a Mastodon-powered comment system. Learn more about it here.